domingo, 2 de agosto de 2015

SEMANA 26

AGOSTO 3 AL 7

HISTORIA DE LA ESTADÍSTICA
Los comienzos de la estadística pueden ser hallados en el antiguo Egipto, cuyos faraones lograron recopilar, hacia el año 3050 antes de Cristo, prolijos datos relativos a la población y la riqueza del país. De acuerdo al historiador griego Heródoto, dicho registro de riqueza y población se hizo con el objetivo de preparar la construcción de las pirámides. En el mismo Egipto, Ramsés II hizo un censo de las tierras con el objeto de verificar un nuevo reparto.
En el antiguo Israel la Biblia da referencias, en el libro de los Números, de los datos estadísticos obtenidos en dos recuentos de la población hebrea. El rey David por otra parte, ordenó a Joab, general del ejército hacer un censo de Israel con la finalidad de conocer el número de la población.
También los chinos efectuaron censos hace más de cuarenta siglos. Los griegos efectuaron censos periódicamente con fines tributarios, sociales (división de tierras) y militares (cálculo de recursos y hombres disponibles). La investigación histórica revela que se realizaron 69 censos para calcular los impuestos, determinar los derechos de voto y ponderar la potencia guerrera.
Pero fueron los romanos, maestros de la organización política, quienes mejor supieron emplear los recursos de la estadística. Cada cinco años realizaban un censo de la población y sus funcionarios públicos tenían la obligación de anotar nacimientos, defunciones y matrimonios, sin olvidar los recuentos periódicos del ganado y de las riquezas contenidas en las tierras conquistadas. Para el nacimiento de Cristo sucedía uno de estos empadronamientos de la población bajo la autoridad del imperio.
Durante los mil años siguientes a la caída del imperio Romano se realizaron muy pocas operaciones Estadísticas, con la notable excepción de las relaciones de tierras pertenecientes a la Iglesia, compiladas por Pipino el Breve en el 758 y por Carlomagno en el 762 DC. Durante el siglo IX se realizaron en Francia algunos censos parciales de siervos. En Inglaterra, Guillermo el Conquistador recopiló el Domesday Book o libro del Gran Catastro para el año 1086, un documento de la propiedad, extensión y valor de las tierras de Inglaterra. Esa obra fue el primer compendio estadístico de Inglaterra.
Aunque Carlomagno, en Francia; y Guillermo el Conquistador, en Inglaterra, trataron de revivir la técnica romana, los métodos estadísticos permanecieron casi olvidados durante la Edad Media.
Durante los siglos XV, XVI, y XVII, hombres como Leonardo de Vinci, Nicolás Copérnico, Galileo, Neper, William Harvey, Sir Francis Bacon y René Descartes, hicieron grandes operaciones al método científico, de tal forma que cuando se crearon los Estados Nacionales y surgió como fuerza el comercio internacional existía ya un método capaz de aplicarse a los datos económicos.
Para el año 1532 empezaron a registrarse en Inglaterra las defunciones debido al temor que Enrique VII tenía por la peste. Más o menos por la misma época, en Francia la ley exigió a los clérigos registrar los bautismos, fallecimientos y matrimonios. Durante un brote de peste que apareció a fines de la década de 1500, el gobierno inglés comenzó a publicar estadísticas semanales de los decesos. Esa costumbre continuó muchos años, y en 1632 estos Bills of Mortality (Cuentas de Mortalidad) contenían los nacimientos y fallecimientos por sexo. En 1662, el capitán John Graunt usó documentos que abarcaban treinta años y efectuó predicciones sobre el número de personas que morirían de varias enfermedades y sobre las proporciones de nacimientos de varones y mujeres que cabría esperar. El trabajo de Graunt, condensado en su obra Natural and Political Observations...Made upon the Bills of Mortality (Observaciones Políticas y Naturales ... Hechas a partir de las Cuentas de Mortalidad), fue un esfuerzo innovador en el análisis estadístico.
Por el año 1540 el alemán Sebastián Muster realizó una compilación estadística de los recursos nacionales, comprensiva de datos sobre organización política, instrucciones sociales, comercio y poderío militar. Durante el siglo XVII aportó indicaciones más concretas de métodos de observación y análisis cuantitativo y amplió los campos de la inferencia y la teoría Estadística.
Los eruditos del siglo XVII demostraron especial interés por la Estadística Demográfica como resultado de la especulación sobre si la población aumentaba, decrecía o permanecía estática.
En los tiempos modernos tales métodos fueron resucitados por algunos reyes que necesitaban conocer las riquezas monetarias y el potencial humano de sus respectivos países. El primer empleo de los datos estadísticos para fines ajenos a la política tuvo lugar en 1691 y estuvo a cargo de Gaspar Neumann, un profesor alemán que vivía en Breslau. Este investigador se propuso destruir la antigua creencia popular de que en los años terminados en siete moría más gente que en los restantes, y para lograrlo hurgó pacientemente en los archivos parroquiales de la ciudad. Después de revisar miles de partidas de defunción pudo demostrar que en tales años no fallecían más personas que en los demás. Los procedimientos de Neumann fueron conocidos por el astrónomo inglés Halley, descubridor del cometa que lleva su nombre, quien los aplicó al estudio de la vida humana. Sus cálculos sirvieron de base para las tablas de mortalidad que hoy utilizan todas las compañías de seguros.
Durante el siglo XVII y principios del XVIII, matemáticos como Bernoulli, Francis Maseres, Lagrange y Laplace desarrollaron la teoría de probabilidades. No obstante durante cierto tiempo, la teoría de las probabilidades limitó su aplicación a los juegos de azar y hasta el siglo XVIII no comenzó a aplicarse a los grandes problemas científicos.
Godofredo Achenwall, profesor de la Universidad de Gotinga, acuñó en 1760 la palabra estadística, que extrajo del término italiano statista (estadista). Creía, y con sobrada razón, que los datos de la nueva ciencia serían el aliado más eficaz del gobernante consciente. La raíz remota de la palabra se halla, por otra parte, en el término latino status, que significa estado o situación; Esta etimología aumenta el valor intrínseco de la palabra, por cuanto la estadística revela el sentido cuantitativo de las más variadas situaciones.
Jacques Quételect es quien aplica las Estadísticas a las ciencias sociales. Este interpretó la teoría de la probabilidad para su uso en las ciencias sociales y resolver la aplicación del principio de promedios y de la variabilidad a los fenómenos sociales. Quételect fue el primero en realizar la aplicación práctica de todo el método Estadístico, entonces conocido, a las diversas ramas de la ciencia.
Entretanto, en el período del 1800 al 1820 se desarrollaron dos conceptos matemáticos fundamentales para la teoría Estadística; la teoría de los errores de observación, aportada por Laplace y Gauss; y la teoría de los mínimos cuadrados desarrollada por Laplace, Gauss y Legendre. A finales del siglo XIX, Sir Francis Gaston ideó el método conocido por Correlación, que tenía por objeto medir la influencia relativa de los factores sobre las variables. De aquí partió el desarrollo del coeficiente de correlación creado por Karl Pearson y otros cultivadores de la ciencia biométrica como J. Pease Norton, R. H. Hooker y G. Udny Yule, que efectuaron amplios estudios sobre la medida de las relaciones.
Los progresos más recientes en el campo de la Estadística se refieren al ulterior desarrollo del cálculo de probabilidades, particularmente en la rama denominada indeterminismo o relatividad, se ha demostrado que el determinismo fue reconocido en la Física como resultado de las investigaciones atómicas y que este principio se juzga aplicable tanto a las ciencias sociales como a las físicas.
Actividad:

1.Leer el texto "historia de la estadística"
2. Realizar un resúmen del anterior texto.
3. Elaborar un mapa mental del tema "historia de las matemáticas".











Cóncavo o convexo

Un polígono convexo no tiene ángulos que apunten hacia dentro. En concreto, los ángulos internos no son mayores que 180°.
Si hay algún ángulo interno mayor que 180° entonces es cóncavo. (Para acordarte: cóncavo es como tener una "cueva")
ConvexoCóncavo

Regular o irregular

Si todos los ángulos son iguales y los lados también, es regular, si no es irregular


Nombres de polígonos

Si es regular...
NombreLadosFormaÁngulo interior
Triángulo (o trígono)360°
Cuadrilátero (o tetrágono)490°
Pentágono5108°
Hexágono6120°
Heptágono (o Septágono)7128.571°
Octágono8135°
Nonágono (or eneágono)9140°
Decágono10144°
Endecágono (or undecágono)11147.273°
Dodecágono12150°
Tridecágono13152.308°
Tetradecágono14154.286°
Pentadecágono15156°
Hexadecágono16157.5°
Heptadecágono17158.824°
Octadecágono18160°
Eneadecágono19161.053°
Icoságono20162°
Triacontágono30168°
Tetracontágono40171°
Pentacontágono50172.8°
Hexacontágono60174°
Heptacontágono70174.857°
Octacontágono80175.5°
Eneacontágono90176°
Hectágono100176.4°
Chiliágono1,000179.64°
Miriágono10,000179.964°
Megágono1,000,000~180°
Googológono10100~180°
n-ágonon(n-2) × 180° / n

domingo, 26 de julio de 2015

SEMANA 25


27 AL 31 DE JULIO



Distribución de frecuencias: muestra el número de veces que ocurre cada observación.

Ejemplo: Se elaboró una encuesta en un jardín de niños y ésta informó que las mascotas más comunes que tiene un niño son perros, gatos, peces, hámsteres y pájaros

perro
gato
perro
hamster
pájaro
hamster
gato
perro
hámster
gato
pájaro
gato
perro
perro
hámster
pájaro
perro
perro
pájaro
gato

A continuación se muestra la distribución de frecuencias absolutas, relativas y porcentuales de las mascotas mas comunes de los niños.
Mascota
Frecuencia absoluta
Frecuencia relativa
Frecuencia acumulada
Perro
7
.35
35 %
Pajaro
4
.20
20 %
Hamster
4
.20
20 %
gato
5
.25
25 %
Estos datos se pueden representar en una gráfica de barras o en una gráfica de pastel:
Gráfica de barras
Gráfica de pastel
NOTA:Para calcular:..
Frecuencia absoluta: se cuenta la cantidad de veces que ocurre el evento, en este caso, las mascotas.
Frecuencia relativa: se divide la frecuencia absoluta de cada evento entre el total de eventos.
Frecuencia porcentual: se multiplica la frecuencia relativa por 100.


DIVISIÓN DE POLINOMIOS.




Resolver la división de polinomios:

P(x) = x5 + 2x3 − x − 8         Q(x) = x2 − 2x + 1
P(x) :  Q(x)
A la izquierda situamos el dividendo. Si el polinomio no es completo dejamos huecos en los lugares que correspondan.
DIVISIÓN
A la derecha situamos el divisor dentro de una caja.
Dividimos el primer monomio del dividendo entre el primer monomio del divisor.
x5 : x2 = x3
Multiplicamos cada término del polinomio divisor por el resultado anterior y lo restamos del polinomio dividendo:
DIVISIÓN
Volvemos a dividir el primer monomio del dividendo entre el primer monomio del divisor. Y el resultado lo multiplicamos por el divisor y lo restamos al dividendo.
2x4 : x2 = 2 x2
DIVISIÓN
Procedemos igual que antes.
5x3 : x2 = 5 x
DIVISIÓN
Volvemos a hacer las mismas operaciones.
8x2 : x2 = 8
DIVISIÓN
10x − 6 es el resto, porque su grado es menor que el del divisor y por tanto no se puede continuar dividiendo.
x3+2x2 +5x+8 es el cociente.

domingo, 19 de julio de 2015

SEMANA 24

JULIO 20 AL 24

JULIO 20----FESTIVO

CONCEPTO DE ESTADÍSTICA.


La estadística es una rama de las matemáticas que conjunta herramientas para recolectar, organizar, presentar y analizar datos numéricos u observacionales. Presenta números que describen una característica de una muestra. Resulta de la manipulación de datos de la muestra según ciertos procedimientos especificados.
Procedimiento:
  1. Obtención de datos
  2. Clasificación
  3. Presentación
  4. Interpretación
  5. Descripción
  6. Generalizaciones
  7. Comprobación de hipótesis por su aplicación.
  8. Toma de decisiones
Términos comunes.
Población: conjunto de todos los individuos (personas, objetos, animales, etc.) que porten información sobre el fenómeno que se estudia. Por ejemplo, si estudiamos la edad de los habitantes en una ciudad, la población será el total de los habitantes de dicha ciudad.

Muestra: Subconjunto de la población seleccionado de acuerdo con un criterio, y que sea representativo de la población. Por ejemplo, elegir 30 personas por cada colonia de la ciudad para saber sus edades, y este será representativo para la ciudad.

Individuo: cualquier elemento que porte información sobre el fenómeno que se estudia. Así, si estudiamos la altura de los niños de una clase, cada alumno es un individuo; si estudiamos la edad de cada habitante, cada habitante es un individuo.

Variable: Fenómeno que puede tomar diversos valores. Las variables pueden ser de dos tipos:

Variables cualitativas o atributos: no se pueden medir numéricamente (por ejemplo: nacionalidadcolor de la pielsexo).

Variables cuantitativas: tienen valor numérico (edad, precio de un productoingresos anuales.

Por su parte, las variables cuantitativas se pueden clasificar en discretas y continuas:

Discretas: sólo pueden tomar valores enteros (1, 2, 8, -4, etc.). Por ejemplo: número de hermanos (puede ser 1, 2, 3....,etc, pero, por ejemplo, nunca podrá ser 3,45).

Continuas: pueden tomar cualquier valor real dentro de un intervalo. Por ejemplo, la velocidad de un vehículo puede ser 80,3 km/h, 94,57 km/h...etc.

DISTRIBUCIÓN DE TABLAS DE FRECUENCIAS
Estadística Descriptiva:
Tienen por objeto fundamental describir y analizar las características de un conjunto de datos, obteniéndose de esa manera conclusiones sobre las características de dicho conjunto y sobre las relaciones existentes con otras poblaciones, a fin de compararlas. No obstante puede no solo referirse a la observación de todos los elementos de una población (observación exhaustiva) sino también a la descripción de los elementos de una muestra (observación parcial).

Distribución de frecuencias: muestra el número de veces que ocurre cada observación.
Ejemplo: Se elaboró una encuesta en un jardín de niños y ésta informó que las mascotas más comunes que tiene un niño son perros, gatos, peces, hámsteres y pájaros
perro
gato
perro
hamster
pájaro
hamster
gato
perro
hámster
gato
pájaro
gato
perro
perro
hámster
pájaro
perro
perro
pájaro
gato

A continuación se muestra la distribución de frecuencias absolutas, relativas y porcentuales de las mascotas mas comunes de los niños.
Mascota
Frecuencia absoluta
Frecuencia relativa
Frecuencia acumulada
Perro
7
.35
35 %
Pajaro
4
.20
20 %
Hamster
4
.20
20 %
gato
5
.25
25 %
Estos datos se pueden representar en una gráfica de barras o en una gráfica de pastel:
Gráfica de barras
Gráfica de pastel
NOTA: Para calcular:..
Frecuencia absoluta: se cuenta la cantidad de veces que ocurre el evento, en este caso, las mascotas.
Frecuencia relativa: se divide la frecuencia absoluta de cada evento entre el total de eventos.
Frecuencia porcentual: se multiplica la frecuencia relativa por 100.





MULTIPLICACIÓN DE POLINOMIOS


Multiplicación de un número por un polinomio

Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número.
3 · ( 2x3 − 3 x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6

Multiplicación de un monomio por un polinomio

Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.
3 x2 · (2x3 − 3x2 + 4x − 2) = 6x5 − 9x4 + 12x3 − 6x2

Multiplicación de polinomios

P(x) = 2x2 − 3    Q(x) = 2x3 − 3x2 + 4x
Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.
P(x) ·  Q(x) = (2x2 − 3) · (2x3 − 3x2 + 4x) =
= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =
Se suman los monomios del mismo grado.
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
Se obtiene otro polinomio cuyo grado es la suma de los grados de los polinomios que se multiplican.
También podemos multiplicar polinomios de siguiente modo:
multiplicación de polinomios




SEMANA 23

13 AL 17 DE JULIO

SUMA DE POLINOMIOS







OPERACIONES CON POLINOMIOS: SUMA  / EJERCICIOS RESUELTOS


EJEMPLO 1: (Suma de polinomios de igual grado)

A = - 3x2 + 2x4 - 8 - x3  + 1/2 x
B = -5x4 - 10 + 3x + 7x3

    2x4  -  x3  - 3x2 + 1/2 x  -  8          (el polinomio A ordenado y completo)
+
   -5x4 + 7x3 + 0x2  +   3x  -  10          (el polinomio B ordenado y completo)
______________________________
   -3x4 + 6x3 - 3x2 + 7/2 x  - 18


A + B = -3x4 + 6x3 - 3x2 + 7/2 x  - 18



Para sumar dos polinomios, hay que sumar entre sí los coeficientes de los términos del mismo grado El resultado de sumar dos términos del mismo grado, es otro término del mismo grado. Si falta algún término de alguno de los grados, se puede completar con 0, como en el ejemplo en el segundo polinomio se completó con 0x2. Y se los suele ordenar de mayor a menor grado, para que en cada columna queden los términos de igual grado.

También se los puede sumar de otra forma (sin ponerlos uno sobre otro), y en la EXPLICACIÓN de cada ejercicio lo mostraré resuelto de las dos maneras.


EXPLICACIÓN DEL EJEMPLO 1 





EJEMPLO 2: (Suma de polinomios de distinto grado)

A = -3x2 + 5x - 4             (grado 2)
B = 4x3 - 5x2 + 2x + 1      (grado 3)

    0x3 - 3x2 + 5x - 4          (el polinomio A ordenado y completo)
+
   4x3  - 5x2 + 2x + 1         (el polinomio B ordenado y completo)
____________________
   4x3  - 8x2 + 7x - 3


A + B = 4x3  - 8x2 + 7x - 3



En el polinomio de menor grado, se pueden completar los primeros términos con ceros. Así, se rellenan las columnas que faltan adelante de uno de los polinomios, para que quede encolumnado término a término con el otro polinomio.









EJEMPLO 3: (Uno de los términos del resultado es cero)


A = 9 + 5x3 - 4x2 + x

B = 4x2 - 3 - 2x


   5x3  - 4x2 + x + 9
+
   0x3 + 4x2 - 2x - 3
____________________
   5x3 + 0x2 - x  + 6


A + B = 5x3 - x  + 6


La suma de los términos de grado 2 dió 0x2. Luego, en el resultado final ya no se ponen los términos con coeficiente cero.






EJEMPLO 4: (No hay términos semejantes)


A = 4x3 + 5
B = -2x + x2


   4x3 + 0x2 + 0x + 5
+
   0x3 +  x2 - 2x + 0
____________________
   4x3 +  x2 - 2x + 5


A + B =  4x3 +  x2 - 2x + 5


Se llama términos "semejantes" a los que tienen el mismo grado (en los polinomios con un solo tipo de letra). Entre estos dos polinomios no hay términos semejantes. Se puede observar que el resultado es la suma de todos términos de los dos polinomios, sin modificarse ninguno, ya que a cada uno se le sumó cero, por no tener otro término semejante.






EJEMPLO 5: (Suma de polinomios de varias letras)

A = -3xy2 + 4 - 7x2y2 - 6x2y - 5xy
B = 8xy - 2xy2 + 10 + 4x3y

A + B = (-3xy2 + 4 - 7x2y2 - 6x2y - 5xy) + (8xy - 2xy2 + 10 + 4x3y) =

-3xy2 + 4 - 7x2y2 - 6x2y - 5xy + 8xy - 2xy2 + 10 + 4x3y =

-3xy2 - 6x2y + 4 + 10 - 5xy + 8xy - 2xy2  + 4x3y  - 7x2y2 =

-9xy2 + 14 + 3xy - 2xy2  + 4x3y - 7x2y2



Cuando los polinomios tienen varias letras, se suman los términos semejantes, que son los que tienen las mismas letras con los mismos exponentes (la misma"parte literal"). Para sumar estos polinomios, no es práctico usar el procedimiento de ordenarlos y sumarlos "en columnas", porque en general hay pocas coincidencias entre sus partes literales. Así que es mejor sumarlos "uno al lado del otro" y "juntar" los términos de igual parte literal.


RESTA DE POLINOMIOS








Eliminación de Signos de agrupación



Signos de agrupación



( )
  paréntesis
[ ]
  Corchetes
{ }
  llaves

Estos signos se emplean para indicar que cantidades contenidas en ellas se consideran como una sola cantidad. También indican que las oporaciones que estan dentro de ellas deben efectuarse primero.
Jerarquia de las operaciones
Las operaciones se tienen que resolver en el siguiente orden. Operaciónes dentro de signos de agrupación en el siguiente orden: Paréntesis(), corchetes[] y llaves {}.
Evaluar todos los exponenetes.
Primero resuelve las multiplicaciones y divisiones de izquierda a derecha.
y despues resuelve las suma y las restas de izquierda a derecha
Ejemplo:
Nota: Recuerda siempre tomar en cuenta la Ley de los signos




3x- (5y+ [-2x+ (y- 6+x) - (-x+y)])=
3x- (5y+ [-2x+ y -6 +x - (-x+y)])
Quitando el primer paréntesis () que estan dentro del []
3x- (5y+ [-2x+ y - 6 + x + x - y])
Quitando el segundo paréntesis () que estan dentro del []
3x- (5y -2x+ y - 6 + x + x - y)
quitando el []
3x - 5y + 2x -y +6 - x - x + y
quitando el ()
Ahora una reducción de términos semejantes
3x - 5y + 6
Y nos quedó como resultado



Ejemplo :
Nota: Recuerda siempre tomar en cuenta la Ley de los signos


- (3m+n) - [2m+ {-m+ (2m-2n-5) }] - (n+7)=
- 3m - n - [2m + {- m + 2m - 2n - 5}] - n -7
quitando el ()
- 3m - n - [2m - m + 2m - 2n - 5] -n - 7
quitando el { }
- 3m - n - 2m + m - 2m + 2n + 5 -n - 7
quitando el [ ]
- 6m - 2
Y nos quedó como resultado